‘Insanely cheap energy’: how solar power continues to shock the world

Australian smarts and Chinese industrial might made solar power the cheapest power humanity has seen – and no one saw it coming

‘Solar is providing the cheapest energy the world has ever seen … It’s a fundamentally different world we’re moving into.’ Photograph: Lukas Coch/AAP

In the year 2000, the International Energy Agency (IEA) made a prediction that would come back to haunt it: by 2020, the world would have installed a grand total of 18 gigawatts of photovoltaic solar capacity. Seven years later, the forecast would be proven spectacularly wrong when roughly 18 gigawatts of solar capacity were installed in a single year alone.

Ever since the agency was founded in 1974 to measure the world’s energy systems and anticipate changes, the yearly World Energy Outlook has been a must-read document for policymakers the world over.

Over the last two decades, however, the IEA has consistently failed to see the massive growth in renewable energy coming. Not only has the organisation underestimated the take-up of solar and wind, but it has massively overstated the demand for coal and oil.

Jenny Chase, head of solar analysis at BloombergNEF, says that, in fairness to the IEA, it wasn’t alone.

“When I got this job in 2005, I thought maybe one day solar will supply 1% of the world’s electricity. Now it’s 3%. Our official forecast is that it will be 23% by 2050, but that’s completely underestimated,” Chase says.

“I see it as the limits of modelling. Most energy system models are, or were, set up to model minor changes to an energy system that is run on fossil fuel or nuclear. Every time you double producing capacity, you reduce the cost of PV solar by 28%.

“We’ve got to the point where solar is the cheapest source of energy in the world in most places. This means we’ve been trying to model a situation where the grid looks totally different today.”

This rapid radical reduction in the price of PV solar is a story about Chinese industrial might backed by American capital, fanned by European political sensibilities and made possible largely thanks to the pioneering work of an Australian research team.

The deep history begins with a succession of US presidents and the quest for energy independence. First was Richard Nixon, who in November 1973 announced Project Independence to wean the US off Middle Eastern oil. Then came Jimmy Carter, who declared the energy transition the “moral equivalent of war” in April 1977 and pumped billions of dollars into renewable energy research, which came to a screeching halt when Ronald Reagan came to power.

But by then, interest had been piqued in Australia.

The father of PV solar

The solar cell was invented when Russell Shoemaker Ohl, a researcher in Bell Labs, noticed in 1940 that a cracked silicon sample produced a current when exposed to light. However, little improvement had been made until the contribution of Martin Green, a young engineering professor working out of the University of New South Wales.

Born in Brisbane, Green had spent some time in Canada as a researcher before circling back home in 1974. A year later he had started a PV solar research group working out of a small university laboratory built with unwanted equipment scrounged from big American engineering firms.

University of NSW researcher Martin Green started a photovoltaic solar research group in 1975. Photograph: University of NSW

His first experiments, alongside a single PhD student, involved looking for ways to increase the voltage on early solar cells.

“Pretty soon, we started beating all these groups in the US in terms of the voltage we could get,” Green says. “Nasa had a project that had six contractors working on it. We beat them all.”

Not long after, Green and his team began to raise their ambitions. Having boosted the voltage, the next step was building better quality cells. Their early efforts broke the world efficiency record in 1983 – a habit the team would continue for 30 of the next 38 years.

In the very early years of the industry, the received wisdom had been that a 20% conversion rate marked the hard limit of what was possible from PV solar cells. Green, however, disagreed in a paper published in 1984.A year later, his team built the first cell that pushed past that limit, and in 1989 built the first full solar panel capable of running at 20% efficiency.

Martin Green and the team that built the first solar cell capable of running at 20% efficiency in 1989. Photograph: University of NSW

It was a moment that opened up what was possible from the industry, and the new upper limit was “set” at 25% – another barrier Green and his team would smash in 2008. In 2015, they built the world’s most efficient solar cell, achieving a 40.6% conversion rate using focused light reflected off a mirror.

Maoneng PH New On-going project: 726.8kWp – Solar Rooftop

Maoneng PH started working on its latest solar rooftop project (726.8kWp) on March 9, 2021. Check out the progress as of today.




Here are some shots captured during the workers orientation (March 8, 2021).

The orientation started with rapid testing for all the new solar PV installers.

After the rapid testing, the HR started facilitating the orientation which includes giving out uniforms and safety shoes and collecting the necessary documents from the workers.
Some shots captured during the orientation proper.

Maoneng PH latest Solar project: 515.04kWp

Completed in April 2021, 515.04kWp Carpark & Rooftop Solar PV Project is located in Imus, Cavite, Philippines. Client will save Php 6,212,736 on it’s first year on using solar energy.

Module  Jinko 435Wp
Inverter  Huawei 100KTL/60KTL 4(100kw) & 1(60kw)
Energy Output for the 1st year  690.304 MWh/yr
Saved CO2 emissions  7934 tons
Total number of workers  12 workers
Total annual savings for the 1st year  Php 6,212,736
Duration  17 weeks
Location  Imus, Cavite, Philippines

Client: MPT South Corporation